Asynchronous time-parallel method based on Laplace transform
نویسندگان
چکیده
منابع مشابه
The Laplace transform on isolated time scales
Starting with a general definition of the Laplace transform on arbitrary time scales, we specify the Laplace transform on isolated time scales, prove several properties of the Laplace transform in this case, and establish a formula for the inverse Laplace transform. The concept of convolution is considered in more detail by proving the convolution theorem and a discrete analogue of the classica...
متن کاملThe Laplace transform on time scales revisited ✩
In this work, we reexamine the time scale Laplace transform as defined by Bohner and Peterson [M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001; M. Bohner, A. Peterson, Laplace transform and Z-transform: Unification and extension, Methods Appl. Anal. 9 (1) (2002) 155–162]. In particular, we give conditions on the class of func...
متن کاملA parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature
We consider the discretization in time of an inhomogeneous parabolic equation in a Banach space setting, using a representation of the solution as an integral along a smooth curve in the complex left half-plane which, after transformation to a finite interval, is then evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of elliptic equations with complex coe...
متن کاملThe Laplace transform method for Burgers’ equation
The Laplace transform method (LTM) is introduced to solve Burgers’ equation. Because of the nonlinear term in Burgers’ equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t , we divide the solution u(x, t) into two parts: u(...
متن کاملNonlinearities distribution Laplace transform-homotopy perturbation method
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Mathematics
سال: 2020
ISSN: 0020-7160,1029-0265
DOI: 10.1080/00207160.2020.1737029